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ABSTRACT 

Motivation: RNA-seq is replacing microarrays as the primary tool 

for gene expression studies. Many RNA-seq studies have used 

insufficient biological replicates, resulting in low statistical power and 

inefficient use of sequencing resources. 

Results: We show the explicit trade-off between more biological 

replicates and deeper sequencing in increasing power to detect 

differentially expressed (DE) genes. In the human cell line MCF-7, 

adding more sequencing depth after 10M reads gives diminishing 

returns on power to detect DE genes, while adding biological repli-

cates improves power significantly regardless of sequencing depth. 

We also propose a cost-effectiveness metric for guiding the design 

of large scale RNA-seq DE studies. Our analysis showed that se-

quencing less reads and perform more biological replication is an 

effective strategy to increase power and accuracy in large scale 

differential expression RNA-seq studies, and provided new insights 

into efficient experiment design of RNA-seq studies. 

Contact: kpwhite@uchicago.edu 
Supplementary information: Supplementary data are available at 

Bioinformatics online. 

1 INTRODUCTION  

RNA-seq has been widely used for differential expression studies 

(Oshlack, et al., 2010; Ozsolak and Milos, 2011). Despite the large 

number of studies performed for transcriptome comparisons, little 

empirical optimization has been made for RNA-seq based experi-

mental designs. Critical issues include biological replication and 

sequencing depth (Auer and Doerge, 2010), and inefficient designs 

of RNA-seq studies can lead to sub-optimal power and waste of 

resources, especially in large scale treatment-control studies. 

Although for most RNA-seq studies high technical reproducibil-

ity means that technical replicates are not necessary (Marioni, et 

al., 2008), this fact does not ameliorate the need for biological 

replicates in making statistical inferences (Hansen, et al., 2011). 
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Yet frequently large scale RNA-seq studies with extensive differ-

ential expression analyses have employed limited biological repli-

cation, instead favoring a strategy of low level biological replica-

tion with very deep sequencing (e.g. (Brawand, et al., 2011; 

Graveley, et al., 2011; Hah, et al., 2011).  

In addition to replication number, the choice for sequencing 

depth is often unguided. It is clear that higher sequencing depth 

generates more informational reads, which increases the statistical 

power to detect differentially expressed (DE) genes (Tarazona, et 

al., 2011). However, high sequencing depth comes with cost, and 

resources will be wasted in scenarios where more sequencing 

brings diminishing returns as a saturation level is approached.  

To achieve maximum power to detect DE genes within a budget, 

a compromise must be made between sequencing depth and bio-

logical replication. There are a few previous studies on experi-

mental design issues for RNA-seq studies (Auer and Doerge, 2010; 

Fang and Cui, 2011; Tarazona, et al., 2011), but they do not direct-

ly address the specific question raised here of the trade-offs be-

tween replication, sequencing depth and cost:  should we sequence 

more samples with low depth, or should we sequence fewer sam-

ples with high depth? 

2 METHODS 

MCF-7 cells (from ATCC) were seeded in complete medium in 6cm2 

plates until reaching 40% confluence, followed by incubation in medium 

with 10% charcoal-stripped serum for 3 days. The cells were then treated 

with either 10nM E2 or control for 24hrs. Qiagen RNeasy columns were 

used to extract mRNAs from these cells. Bioanalyzer was used to measure 

the integrity of all mRNAs samples to make sure all the samples have RIN 

number greater than 9. 

RNA-seq libraries were made with Illumina TruSeq RNA sample prepara-

tion protocol by Institute for Genomics and Systems Biology Sequencing 

Center. The libraries were multiplexed with Illumina barcodes and 6 sam-

ples were sequenced per lane by Illumina HiSeq 2000. 50bp single end 

reads were generated for the datasets. 7 biological replicates of both control 

and E2-treated MCF7 cells were sequenced. All libraries have > 30 million 

reads sequenced.  

All libraries were aligned to the hg18 human genome using Tophat 

(Trapnell, et al., 2012). We then randomly down-sampled the RNA-seq 

reads of each sample to generate datasets of 2.5M, 5M, 10M, 15M, 20M, 

25M and 30M reads using Picard Version 1.61(Wysoker, et al., 2012). In 

all subsequent analysis, the total number of reads refers to total number of 
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aligned reads. Using these down-sampled sequence reads, we generated 

raw counts of number of tags on each gene by using coverageBED program 

in the BEDTools package Version 2.16.2 (Quinlan and Hall, 2010). 

edgeR (Robinson, et al., 2010) package (Version 2.6.9) was used to detect 

significantly differential expressed genes between control and E2-treated 

samples. Upper-quantile normalization was performed to normalize tag 

counts among different samples. Tag-wise dispersion of negative binomial 

distribution for each gene was estimated and used in the exactTest function 

in edger package to identify DE genes. Genes with fewer than 5 reads are 

removed from calculation. In the simulation, under each sequencing depth, 

treatment samples are randomly picked (without replacement) to compare 

with same number of control samples, and number DE genes were calculat-

ed using edgeR, with FDR < 0.05 (BH adjusted) as the cutoff. Each se-

quencing depth and biological replication is simulated 100 times. 

For the power calculation and generation of ROC curves, a list of 3,292 

genes is used as “true positives” for E2 regulated genes, which are the DE 

genes detected by edgeR, using 7 biological replicates, 30M sequencing 

depth, with a FDR cutoff of 0.001. Using this gene list we computed true 

positive rates and true negative rates for each replication level and each 

sequencing depth on varying FDR rates, then computed the power, and 

constructed the ROC curves based on these rates.  

The coefficient of variation for the logFC was computed using the top 100 

differentially expressed genes (defined as having the lowest FDR in edgeR 

using 7 replicates, 30M reads per replicate). Estimated logFC computed at 

each level of replication and sequencing depth was simulated 100 times the 

same way as above and CV was computed. logCPM (logarithm of counts 

per million reads) was used here as a proxy for the estimation accuracy for 

expression level instead of FPKM, because genes with similar tag counts 

will have similar level of randomness in expression estimation which made 

across genes comparison possible. CV of logCPM was calculated similar to 

CV of logFC. The high expression level genes were defined as genes with 

logCPM rank 1-100, medium expression level genes were defined as genes 

with logCPM rank 2001 – 2100, low expression level genes were defined 

as genes with logCPM rank 12001 - 12100. 

When calculating cost per DE gene, we made the following assumptions: 

Illumina sequencing cost per lane is $1200 (including reagents, personnel, 

equipment depreciation and contracts), for each lane 150M reads can be 

produced, and maximum multiplexing for each lane is 24x. The fixed cost 

for each sample is the library preparation cost, which is assumed to be $250 

(reagents and personnel).   

3 RESULTS 

3.1 Trade-off between sequencing depth and biologi-

cal replication 

We calculated the number of significantly differentially expressed 

genes between E2-treated MCF7 cells and control-treated MCF7 

cells under various levels of biological replication and sequencing 

depth (Figure 1a; See Methods). The number of DE genes increas-

es with both increased number of biological replicates and in-

creased number of reads in each sample. However, the increase in 

number of DE genes with sequencing depth has diminishing re-

turns after 10 million (10M) reads. For example, at a sequencing 

depth of 10M reads, using 2 biological replicates for a total of 20M 

combined reads, the average number of DE genes identified is 

2,011.   If we use 15M reads and 2 biological replicates for a total 

of 30M combined reads the number is 2,139, a 6 % increase for a 

50% increase in reads.  If instead we apply an additional 10M 

reads to another biological replicate (3 biological replicates for a 

total of 30M combined reads) we obtain an average of 2,709 DE 

genes, a 35% increase.  Even if we triple the reads for the two bio-

logical replicates to 30M each (60M combined total), we find an 

average of 2,522 DE genes, an increase of only 27%.  Similar re-

sults were observed when we used different significance cutoffs or 

using different software package DESeq (Anders and Huber, 2010) 

(Supplementary figure S1). 

Moreover, as one might expect based on most other biological 

measurements (Sokal and Rohlf, 1995), substantial increase in 

power through replication occurs regardless of sequencing depth. 

At 30M depth, 2 replicates gives 2,553 DE genes, and 3 replicates 

gives 3,447 DE genes, a 35% increase. If samples are available, 

adding more biological replicates almost always increases power 

significantly. Adding biological replicates has diminishing returns 

only when number of replications is very high. Increase from 2 

biological replicates to 3 biological replicates at 10M depth yielded 

a 34.7% increase in number of DE genes, but increase from 6 rep-

licates to 7 replicates still added 26.3% more DE genes at this se-

quencing depth (Figure 1a). When we split genes into high, medi-

um, and low expressers and plot the relationship between DE 

genes, sequencing depth and replication level separately, we see 

that biological replicates increase DE genes for genes of all expres-

sion levels, and are more effective than adding sequencing depth 

for all expression levels (Figure S3).  

Fig. 1. (a) Increase in number of biological replication significantly in-

creases the number of DE genes identified, while number of sequencing 

reads have diminishing return after 10M reads. Different color indicates 

different number of replication, with 2 replicate the darkest and 7 replicate 

lightest. The lines are smoothed average line of each replication level, with 

the shade corresponding to 95% confidence interval of the mean number of 

DE genes. (b) Power of detecting DE genes increases with both sequencing 

depth and biological replication level. Similar to the trends in (a), the power 

increases after 10M become smaller. (c) ROC curve for 3 biological repli-

cates. Sequencing deeper than 10M reads does not significantly improve 

statistical power and precision for detecting DE genes. (d) The coefficient 

of variation (CV) of logFC for the top 100 differentially expressed genes. 

The CV of the logFC estimates decreases significantly as we add more 

biological replicates, while adding sequencing depth after 10M reads has 

much less effect. 
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Concordant with the total number of DE genes, statistical power 

also increases as more sequence or biological replicates are added 

(Figure 1b). Similar to the trends in total numbers of DE genes, we 

observed diminishing returns on power after 10M reads per sam-

ple.  For example, with 2 replicates, 10M reads per sample (20M 

reads combined), we calculated a power of 0.46. When we tripled 

the number of reads to 30M reads per sample (60M reads com-

bined), we observed a power of 0.55, only a 19.6% increase. In 

contrast, if we add another biological replicate at 10M reads (30M 

reads combined), we reach a power of 0.65, a 41.3% increase. 

When we split the genes into high, medium, and low expressers 

and plotted the relationship between power, sequencing depth and 

replication (Figure S4), similar trends were observed: replication 

adds significant power to detect DE genes regardless of expression, 

and is more effective than adding sequencing depth. If this strategy 

is adopted, one possible concern is that with lower sequencing 

depth, more genes will be dropped from the DE calculation, as 

most software packages remove genes with fewer than 5 reads. 

However, in our dataset as long as number of reads exceeds 10M, 

reducing sequencing depth has very small effects on the number of 

genes being removed. (Figure S5). 

 

Fig. 2.  (a-c) The coefficient of variation (CV) of logCPM (count per 

million reads) for high expression level genes (a), medium expression level 

genes (b), and low expression level genes (c) (See Methods for definition). 

High/medium expression level genes have very low CV for expression 

level estimates, adding sequencing depth do not have significant effect on 

accuracy of estimation, while adding biological replicates still improves 

accuracy significantly. For low expression level genes, both adding se-

quencing depth and adding biological replication level improves expression 

level estimation accuracy. (d) Number of DE genes plotted against the total 

estimated sequencing cost. If higher number of #DE is needed, increased 

number of biological replicates has to be used. 

To look further into the false positive rates and false negative rates 

under these conditions, we constructed ROC curves for all se-

quencing depth and replication level (Figure 1c; see methods for 

details). At 3 biological replicates, 10M reads is nearly as good as 

30M reads in terms of statistical power and precision (percentage 

of true positives among all positives). Curves for other replication 

levels showed very similar trends (Supplementary Figure S2). For 

ROC curves at 10M reads, similar to the trends in the power 

curves, 4 replicates is very close to 6 replicates, while power and 

precision gains from 2 replicates to 3 replicates, and 3 to 4 repli-

cates, are more substantial. 

We also examined individual gene log fold changes (logFC) and 

expression level estimation accuracy under different levels of rep-

lication and sequencing depth, to gain a quantitative idea of how 

accurate these estimates are under different conditions. For logFC 

estimates, we calculated the logFC coefficient of variation (CV) 

for the top 100 most differentially expressed genes (Figure 1d). For 

these 100 genes, adding sequencing reads after 10M reads barely 

has any effect on CV when replication is high, while biological 

replication continues to improve accuracy of logFC estimation 

significantly, High replication level gives accuracies that are prob-

ably not practically achievable by adding sequencing depth at low 

replication levels.  

For expression level estimation, we examined three groups of 

genes: high, medium, and low expression level (See Methods). For 

these three groups of genes, the CV of logarithm counts per million 

reads (logCPM) was calculated and plotted against sequencing 

depth and replication level (Figure 2a-c). For highly expressed 

genes, expression level estimate accuracy is already very high 

(Figure 2a), and adding more reads has little effect on accuracy, 

while biological replicates still improves accuracy. For low expres-

sion genes (Figure 2c), CV for expression estimates are much larg-

er, and accuracy is improved when either more reads or more rep-

licates were added. For genes with medium expression level (Fig-

ure 2b), the situation is somewhat in between, as expected: adding 

more sequencing reads reduced CVs slightly, while biological 

replicates still reduced CV significantly. These results indicate that 

biological replicates improve the accuracy in estimating expression 

level for all genes, regardless of expression level, while adding 

sequencing depth will improve estimation accuracy mostly for low 

expression genes. 

3.2 A metric for cost effectiveness 

When choosing an experimental design for an RNA-seq differen-

tial expression study, the trade-off between number of biological 

replicates and sequencing depth is an important consideration, 

especially for large projects where many perturbation experiments 

are performed. Our results indicate that biological replicates are 

very important for increasing the power for DE gene detection 

regardless of the sequencing depth used.  

In order to guide experimental designs of RNA-seq studies for 

differential expression, we propose the following simple metric: 

 

Cost per 1% power given a particular design = 

(fixed costs per sample * number of samples + se-

quencing costs) / power 

 

The cost per 1% power metric measures the cost effectiveness of a 

given study design. Fixed costs per sample include library con-

struction costs, sample costs and labor costs. Sequencing costs are 

variable costs for each sample depending on the sequencing depth 

and multiplexing scheme used. In study designs for RNA-seq DE 

studies, we can compare different designs using cost per 1% power 

after defining our total budget, and desired power.  

Using this formula and some cost assumptions (see methods for 

details), we calculated the cost per 1% power for different designs 
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of our experiment (Table 1). For our samples, the lowest cost per 

1% power was achieved at the 10M sequencing depth for 2-6 rep-

licates. The cost per 1% power did increase slightly when we add-

ed more biological replicates, but having more biological replicates 

also means higher power (Figure 2b). If a larger number of DE 

genes is desired in the study, the number of samples has to be em-

ployed in the study can be decided based on such “standard 

curves”. However, note that our cost calculation here does not 

reflect the sample collection cost, because it varies hugely from 

project to project. For human cell line studies we presented here, 

sample collection cost is relatively low, but for other projects, the 

sample collection cost can dominate the cost calculation. The in-

vestigator should definitely take sample collection cost into con-

sideration when designing the project.  

Table 1.  Cost efficiency for power to detect DE genes (cost per 1% power 

given each experimental design where the variables are). Assumptions 

made during calculations are described in Methods. * indicates lowest cost 

per 1% power in each replication level. Units are in dollars.  

Relative 

Cost  

2.5M 5M 10M 15M 20M 25M 30M 

2 replicates 24.2 17.2 14.4* 15.8 16.7 17.0 17.8 

3 replicates 23.4 17.2 15.3* 16.3 17.1 18.5 19.4 

4 replicates 23.1 17.7 16.5* 17.5 18.6 19.8 21.2 

5 replicates 23.8 19.0 18.1* 19.4 21.0 22.8 24.9 

6 replicates 25.0 20.7 20.6* 22.4 24.6 27.0 29.4 

7 replicates 26.8 23.0* 23.5 26.0 28.7 31.5 34.3 

4 CONCLUSION 

We conclude that in a typical DE study using RNA-seq, sequenc-

ing deeper for each sample generates diminishing returns for pow-

er of detecting DE genes once beyond a certain sequencing depth. 

Instead, increasing the number of biological replications consist-

ently increases the power significantly, regardless of sequencing 

depth. Additionally estimation accuracy for log fold changes and 

absolute expression levels greatly improve across the board when 

more biological replicates are added, while sequencing depth im-

proves the accuracy of these estimations only in some situations, 

So, when possible, using more biological replication with lower 

sequencing depth, instead of sequencing few samples in great 

depth, is a more efficient strategy for RNA-seq DE studies. In the 

specific case of MCF7 breast cancer cell samples, our cost metric 

suggests that sequencing more than 10M reads per sample gives 

diminishing returns compared to adding replication. Obviously, for 

other species and perhaps other samples such as heterogeneous 

tumor samples, the exact sequencing depth will be different, but 

the overall guideline of replication rather than deeper sequencing 

should still remain the same. A similar set of standard curves could 

be constructed for each type of sample to guide experimental de-

signs. We argue that such a metric is useful in designing large-

scale genomic studies to optimize cost effectiveness.  Almost all 

individual laboratories are mindful of budgets, but the stakes are 

particularly high in studies such as ENCODE or TCGA where 

millions of dollars are being spent on sequencing. Careful consid-

eration needs to be given to cost effectiveness.  

We have focused on differential expression studies using RNA-seq 

with the aim to improve a single target: power to detect differen-

tially expressed genes between samples. Of course, there are cases 

where sequencing very deeply is advantageous (such as differential 

expression of exons, and transcript specific expression,). In these 

applications, much higher sequencing depths are required, because 

the informative genomic regions are much shorter. However, if 

gene differential expression is the primary goal, it would be a sen-

sible choice to optimize sequencing depth and number of biologi-

cal replicates according to the simple guidelines we propose here. 
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